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Abstract

Objectives Clinical use and illicit abuse of the potent opioid agonist oxycodone has
dramatically increased over the past decade. Yet oxycodone remains one of the least
studied opioids, particularly its interactions on the genomic level. The aim of this study was
to examine potential alterations in gene expression of drug metabolising enzymes in the
liver tissue of male Sprague-Dawley rats chronically treated with oxycodone.
Methods Rats were administered saline or oxycodone 15 mg/kg i.p. twice a day for
8 days. Changes in RNA levels were detected using microarray analysis validated by
quantitative real-time PCR; consequent changes in protein expression and functionality
were further assessed by Western blotting and activity assays.
Key findings The expression of several drug metabolising enzymes was modulated by
oxycodone treatment: cytochrome P450 (CYP) 2B2, CYP2C13, CYP17A1, epoxide
hydrolase 2, carboxylesterase 2, flavin-containing monooxygenase 1, glutathione S-trans-
ferase alpha 5 (rGSTA5) and CYP3A2. In particular, the mRNA level of rGSTA5
(formerly GSTYc2) was up-regulated by approximately 6.5 fold and CYP3A2 was down-
regulated by approximately 7.0 fold. Immunoblotting assays demonstrated a corresponding
significant elevation of rGSTA5 protein and repression of CYP3A2 protein. The apparent
cytosolic GST activity towards 1-chloro-2,4-dinitrobenzene conjugation and reduction of
cumene hydroperoxide were significantly higher in liver from oxycodone-treated rats than
that of saline-treated rats. In addition, the microsomal activity of CYP3A2, measured via
6b-hydroxylation of testosterone, was significantly decreased in oxycodone-treated rats.
Conclusions Repeated oxycodone administration is associated with a significant up-
regulation of rGSTA5 and concomitant down-regulation of CYP3A2 mRNA, protein
expression and functionality. These results support further in-vivo studies into the clinical
impact of our findings.
Keywords rGSTA5; CYP3A2; microarray; oxycodone; drug metabolising enzymes

Introduction

Oxycodone (14-hydroxy-7,8-dihydrocodeinone) is a semi-synthetic opioid derivative of
thebaine and is structurally similar to morphine and other phenanthrene opium alkaloids. It
is extensively metabolised via N- and O-demethylation, 6-ketoreduction and glucuronida-
tion.[1] Several of these metabolic pathways proceed via cytochrome P450 (CYP)-mediated
oxidation, including O-demethylation to oxymorphone, a potent but quantitatively minor
metabolite,[2] and N-demethylation to the inactive metabolite noroxycodone.[3] CYP2D6
has been identified as the high-affinity enzyme responsible for O-demethylation, and
CYP3A4 was shown to be the high-affinity CYP isoform involved in N-demethylation.[4]

Documentation of clinical oxycodone use dates back to 1917.[5] Historically, it was most
commonly prescribed in the USA to treat mild-to-moderate pain in low-dose combinations
with paracetamol or aspirin.[5] In 1995, the US Food and Drug Administration approved a
sustained-release formulation containing solely oxycodone hydrochloride (OxyContin).
Since then, annual prescriptions in the USA have increased markedly.[6,7] The amount of
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oxycodone prescribed or dispensed in the USA increased by
over 1000% from 1999 to 2002.[8] Specifically, use of
oxycodone for moderate-to-severe cancer-related pain has
increased greatly in recent years.[5]

In addition to analgesia, oxycodone administration
produces pleasurable, euphoric and reinforcing effects that
are primarily mediated by mu-opioid receptors,[9] which
commonly leads to misuse and abuse.[10] Although reports of
abuse were anecdotal at first, reports on epidemic-type
increases in oxycodone abuse have recently been pub-
lished.[11–13] Dasgupta et al.[8] found a substantial correlation
between the number of emergency department mentions
recorded by the Drug Abuse Warning Network (DAWN) and
oxycodone prescription use. Another DAWN-based categor-
isation system found nearly 1000 oxycodone-related deaths
from 1999 to 2002 in 23 states, in which over 90% of the
cases were due to multiple drug abuse or polypharmacy
related deaths. The Institute for Safe Medication Practices
has included oxycodone in the drug class with a heightened
risk of significant harm when used in error (www.ismp.org).

Despite the well documented and widespread clinical use
and illicit abuse of oxycodone, little is known about its
potential effects on the genomic regulation of common drug
transporters and drug metabolising enzymes (DMEs). In
previous studies we studied the effects of oxycodone treatment
on the major drug efflux transporter P-glycoprotein (P-gp).
We established that chronic administration of oxycodone to
male Sprague-Dawley rats resulted in the induction of P-gp
protein in the liver, kidney, intestine and brain.[14] Further-
more, brain uptake studies following a single intraperitoneal
dose of radiolabelled paclitaxel showed a significant reduction
in brain concentrations of paclitaxel, suggestive of a potential
clinical drug–drug interaction between this drug and oxyco-
done via P-gp.[14] In another recent study, we used a
microarray approach to demonstrate that chronic administra-
tion of oxycodone significantly modulated a group of genes in
rat brain tissues, including the efflux transporter Abcg2 (breast
cancer resistance protein; BCRP).[15] Subsequent brain uptake
studies demonstrated that oxycodone treatment resulted in a
significant decrease in brain/plasma ratios of mitoxantrone,
also suggestive of a clinical drug–drug interaction.[15]

In the current study we build upon our current global
microarray analysis of liver tissues, focusing on alterations in
gene expression of DMEs in the liver of male Sprague-
Dawley rats treated with oxycodone or saline (control). To
identify up- or down-regulated genes, we performed micro-
array and quantitative real-time (QRT) PCR analyses.
We used Western blotting and several functional assays to
further characterise changes in protein expression and
functional implications of two particular DMEs – rat
glutathione S-transferase A-5 (rGSTA5) and CYP3A2, both
of which are involved in the metabolism of a diverse range of
endogenous and exogenous substrates.[16–18]

Materials and Methods

Materials

Oxycodone (14-hydroxy-7,8-dihydrocodeinone) was gra-
ciously donated by Dr Andrew C. Coop (University of

Maryland). Cumene hydroperoxide 88% (CuOOH), 1-chloro-
2,4 dinitrobenzene (CDNB), glutathione (GSH), glutathione
reductase from baker’s yeast (Saccharomyces cerevisiae),
b-NADPH, EDTA and sodium azide were all purchased from
Sigma-Aldrich Co. (St Louis, MO, USA). All other
chemicals, solvents and reagents were of analytical grade
or highest purity available.

In-vivo study

Male Sprague-Dawley rats (270–300 g) purchased from
Harlan Laboratories (Indianapolis, IN, USA) were separated
into two groups of six. The rats were housed individually and
allowed to acclimate to their new environment at least 2 days
prior to the experiments. They were provided with standard
rat chow and tap water ad libitum and maintained under a
standard 12-h light–dark cycle.

The protocol for the animal studies was approved by the
University of Maryland, School of Pharmacy, Institutional
Animal Care and Use Committee.

Rats were given either oxycodone 15 mg/kg i.p. twice
daily or saline 1 ml/kg i.p. twice daily for 8 days. The mean
daily oxycodone dose (8.25 ± 1 mg) administered in this
study is pharmacologically relevant and was based on
previous literature. For example, patients with non-cancer
related chronic pain receive oxycodone doses in excess of
275 mg/day,[19] and the average daily oxycodone dose in
cancer patients was 150 ± 20 mg daily.[20]

On the morning of the 9th day rats were asphyxiated using
carbon dioxide. Liver tissues were harvested immediately
and placed on ice.

RNA isolation

Total RNA was isolated using the Trizol reagent, according
to the manufacturer’s standard protocol (Invitrogen, Carlsbad,
CA, USA). Harvested liver tissue was homogenised in
Trizol reagent, followed by organic extraction and ethanol
precipitation. RNA concentration was quantified by
UV spectroscopy at 260 nm and purity gauged by determin-
ing the 260/280 nm ratio. Thirty micrograms of isolated
RNA was treated with DNase for 10 min using a DNase kit
(Qiagen Inc., Carlsbad, CA, USA), according to the
manufacturer’s standard protocol, and was further purified
using the RNeasy MinElute Kit (Qiagen Inc.). The
concentration of purified RNA was measured using spectro-
scopy. RNA quality was assessed by electrophoresis on a 1%
agarose gel, and using the 2100 Bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). Only total RNA with
sharp and well-defined 28S and 18S ribosomal RNA peaks,
indicative of acceptable RNA integrity, was used for further
analysis.

Expression profiling

Gene profiling was performed using the GeneChip rat
genome 230 2.0 array (Affymetrix, Santa Clara, CA, USA)
containing 31 000 gene probe sets. Each treatment group
(oxycodone and saline) consisted of three sets of RNA, each
set derived from pooled RNA from two rats. RNA samples in
each set were used to make templates for in-vitro transcrip-
tion; the labelled transcripts were prepared using the one-
cycle target labelling and control reagent kit using the
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Affymetrix protocols. Standard conditions were used for
hybridisation; washing was with the Affymetrix Fluidics
Station 450 and Hybridization Oven 640. Array scanning was
performed with the Affymetrix GeneChip Scanner 3000.
RNA labelling, hybridisation, washing and scanning were
conducted at the University of Maryland, School of
Medicine, Biopolymer/Genomics Core Facility.

Microarray data analysis

RNA quantification was performed using the background-
adjusted robust multiple average method and implemented in
the Bioconductor R packages Affy and gcrma.[21,22] The
detection call P value calculated by Affymetrix Microarray
suite was used as a marker of gene expression (present,
marginal or absent). Fold change in the transcript levels and
statistical analysis were calculated using Spotfire Decision-
Site 8.2.1 algorithm (Spotfire, Inc., Somerville, MA, USA).
Results were tabulated into a spreadsheet and genes
exhibiting significant up- or down-regulation were sorted
separately from the remaining genes. The sorted list was
scanned across numerous iterations for the presence of
DMEs.

Quantitative real-time PCR

RNA levels of 10 DME genes (Table 1) were additionally
examined by QRT-PCR to validate the microarray findings.
The QRT-PCR assay was conducted using the iCycler iQ
instrument according to the manufacturer’s suggested proto-
col (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
Briefly, cDNA was synthesised from 1 mg total RNA using
the iScript cDNA Synthesis Kit (Bio-Rad). An aliquot (10%)
of the reverse transcription reaction was used as the template
for QRT-PCR reactions containing iQ SYBR Green Super-
mix (Bio-Rad) and a final primer concentration of 200 nmol/l.
Primers (Table 2) were designed using the Beacon Designer
3.0 software (Premier Biosoft, Palo Alto, CA, USA). The
basic local assignment search tool (BLAST) search engine
(www.ncbi.nlm.nih.gov/BLAST) was used to test primer
specificity against the whole rat genome database. QRT-PCR

reactions included an initial denaturation step at 95ºC for
3 min, followed by 40 PCR cycles with a 30 s melt at 95ºC,
then annealing and extension at 60ºC for 45 s. All reactions
were performed in triplicate. The cycle threshold (Ct) was
calculated automatically using the second derivative of the
reaction. The Ct of each DME gene was normalised against
the Ct for glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), which showed no significant regulation in our
microarray analysis. Fold change was determined using the
delta delta Ct method. Statistical significance (P < 0.05)
between treatment groups was evaluated using the Student’s
t-test.

Cytosol and microsome preparation

Liver cytosol[23] and microsome[24] fractions were isolated
separately from pooled liver (n = 4) samples. Protein
concentration was measured using the Bio-Rad DC protein
assay (Hercules, CA, USA), using bovine serum albumin as a
standard. Samples were stored at −80ºC until further analysis.

SDS-PAGE and Western blotting

SDS-PAGE and immunoblotting of rGSTA5 were performed
as described previously[25] using the Laemmli discontinuous
buffer system[26] in a 10% polyacrylamide gel with a 5%
stacking gel. The positive control was hepatic S9 fraction
from pooled male mice purchased from BD Biosciences
(Woburn, MA, USA) since it contains an appreciable amount
of mouse GSTA3 (formerly known as GST Ya3) which has
strong cross-reactivity with anti-rGSTA5 and similar electro-
phoretic properties to rGSTA5.[27] Bio-Rad Immun-Blot
PVDF membranes (0.2 mmol/l) containing transferred pro-
tein were incubated overnight at 4ºC with antisera raised in
rabbits against rGSTA5 (1 : 5000 dilution) that was
graciously donated by Dr John D. Hayes (University of
Dundee, Biomedical Research Centre, Dundee, Scotland).
Immunoreactive protein was detected using the SuperSignal
West pico chemiluminescent substrate kit (Pierce, Rockford,
IL, USA) on a Bio-Rad ChemiDoc XRS imaging system. For
the control, the same membrane was probed in an analogous

Table 1 Differential expression of drug metabolising enzymes on microarray and quantitative real-time PCR analyses in the liver tissue of male

Sprague-Dawley rats administered repeated doses of oxycodone 15mg/kg i.p. or saline control

Gene Title Gene symbol Microarray fold change QRT-PCR fold change

Up-regulation

Glutathione S-transferase alpha-5 GSTA5 7.0 (0.001) 6.0 (0.01)

P450 oxidoreductase POR 8.0 (0.003) 9.0 (0.01)

CYP3A1 CYP3A1 2.0 (0.03) 3.0 (0.001)

CYP2B2 CYP2B2 6.0 (0.008) 7.0 (0.01)

CYP17A1 CYP17A1 17.0 (0.004) 9.0 (0.007)

Epoxide hydrolase-2 EPHX2 3.0 (0.04) 3.0 (0.03)

Carboxylesterase-2 CES2 3.0 (0.0001) 3.0 (0.02)

Flavin monoxygenase-1 FMO1 4.0 (0.01) 5.5 (0.01)

Down-regulation

CYP2C13 CYP2C13 2.0 (0.002) 5.0 (0.01)

CYP3A2 CYP3A2 7.0 (0.04) 6.0 (0.01)

Values are expressed as fold change (P value). Fold change (oxycodone/saline-treated rats) in transcript levels on microarray were calculated using

Spotfire DecisionSite 8.2.1 algorithm and in transcript levels on QRT-PCR using the delta delta cycle threshold method. P values on microarray were

generated from ANOVA calculated by Spotfire software, and on QRT-PCR were calculated using Student’s t-test.
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fashion for immunoreactive b-actin. Immunoblotting proce-
dures for detecting CYP3A2 in microsomal fractions were
similar to above using an anti-CYP3A2 antibody (Abcam;
Cambridge, MA, USA); the positive control was pooled male
rat liver microsomes (BD Biosciences).

Enzymatic activity assays

Two functional spectrophotometric studies were used to
measure cytosolic GST activity. Firstly, the apparent
cytosolic GSH conjugation of CDNB was measured using a
spectrophotometer following the method of Habig et al.[28]

Secondly, the apparent selenium-independent GSH perox-
idase activity via NADPH oxidation was assessed using the
method described by Howie et al.[23]

The intra-day and inter-day variability for both GST
activity assays was ≤ 15% (%CV). CYP3A2 activity,
graciously measured by Dr James P. Hardwick (Northeastern
Ohio Universities College of Medicine, Rootstown, Ohio,
USA) was measured via 6b-hydroxylation of testosterone
using silica thin-layer chromatography (TLC) and
autoradiography.[29]

Statistical analysis

Hepatic expression of rGSTA5andCYP3A2protein, aswell as
CYP3A2 testosterone hydroxylase activity, were compared
between oxycodone- and saline-treated rats using an unpaired
t-test as described previously[30] using SigmaStat version 3.10
(Systat Software; Point Richmond, CA, USA). Two-way
analysis of variance followed by Bonferroni’s post-hoc t-test
was used to evaluate the differences between treatment groups
and substrate concentrations in bothGST functional assays.[30]

The threshold of significance was set at P < 0.05.

Results

Differential expression of drug metabolising
enzyme genes on microarray

Total RNA was freshly isolated and purified from the liver
tissue of oxycodone- and saline-treated rats on the morning
of the ninth study day. RNA levels were evaluated using an
Affymetrix microarray rat genome array that contained
approximately 31 000 probe sets that correspond to 28 000

well-substantiated rat genes. From the several hundred genes
which showed altered expression, ten DME genes (Table 1),
including those encoding isoenzymes from the GSTs, CYPs,
epoxide hydrolases, carboxylesterases and flavin-containing
monooxygenases, were identified. Eight out of ten (80%) of
the differentially regulated genes were significantly up-
regulated (Table 1), whereas two enzymes, CYP2C13 and
CYP3A2, were significantly down-regulated.

Microarray validation using QRT-PCR

All ten of the DME genes showing differential expression on
microarray were also subjected to QRT-PCR. Randomly
selected genes (n = 8) showing no significant regulation on
microarray were also evaluated by QRT-PCR to confirm the
reliability of the statistical approach used for microarray data
analysis (data not shown). Fold change and subsequent
P values derived from the QRT-PCR analysis are shown in
Table 1 alongside the microarray data for comparison. These
results demonstrated a high level of correlation between the
microarray and QRT-PCR results. For statistical verification,
the computed Pearson product-moment correlation coeffi-
cient was calculated; a significant correlation between the
QRT-PCR and microarray data sets was found (r = 0.900;
P < 0.0001). For the eight non-significantly regulated genes
there was also a strong correlation (r = 0.960; P < 0.001)
between calculated fold change and P values from micro-
array and QRT-PCR analysis (data not shown). Overall, our
correlation analysis confirms the validity of the observed
differential expression from the microarray analysis and
provides confidence in the detailed normalisation and
statistical procedures undertaken in this study.

Expression of glutathione S-transferase protein

Using SDS-PAGE and Western blotting, we identified the
rGSTA5 protein (25–28 kDa) in the hepatic cytosol from
both saline- (lanes 1 and 2) and oxycodone- (lanes 3 and 4)
treated rats, and a GST isoform with similar electrophoretic
properties (lanes 5 and 6), likely GSTA3, in standard murine
S9 fraction (Figure 1). Electrophoretic mobility of the
observed GST isozyme proteins is similar to previous
findings summarised by Hayes and Pulford.[16] Optical
density calculations (mean ± SD, n = 4) of rGSTA5 bands
normalised to b-actin control for saline and oxycodone

Table 2 Sense and antisense primers used in qualitative real-time PCR analysis generated from Beacon Designer software

Gene symbol Sense (5′→3′ direction) Antisense (5′→3′ direction) Accession no.

GSTA5 GCCGATCTGGAGTTGATGGTT TCAGCTTGTTGCCAACGAGAT NM_001009920

POR CTGCTGTCACCGCCAACC TCTGAGATGTCCAACTCCAGGT NM_031576

CYP3A1 AGAGGAGTAATTTGCTGACAGACC GTGTGCGGGTCCCAAATCC NM_173144

CYP2B2 CGGCGATTCTCTCTGGCTAC GCAGTTCCTCCACCAAACATTG XM_341808

CYP17A1 GCCATCTGCCTACACCTGG TGACTTGACCCAAAAGAAATAGGC NM_012753

CYP2C13 ACCCTGTGATCCCCAATTCATC CGGACAATAATCAAGAAGTATAGGAAATAT J02861

CYP3A2 GAATGCTTTTCTGTCTTCACAAACC TTTACCAAAATGTCTCCATACTGTTCA NM_153312

EPHX2 CTGCCCAGAGACTTCCTACTTG ATGGCTTGGCTGAATETTTCACTTAT NM_022936

CES2 GCCATCATGGAGAGTGGAGTG TGAAGACCTTGTTAATGACCAGAATC NM_133586

FMO1 GCCGAGTCTTTGATTCAGGGTA TCATCATTCAGCACAGGCTCTC NM_012792

GAPDH CCCATCACCATCTTCCAGGAG GTTGTCATGGATGACCTTGGC NM_017008

Gene descriptions for the corresponding gene symbol are included in Table 1.
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groups (Figure 1) were 0.410 ± 0.100 and 0.970 ± 0.170,
respectively (P = 0.008). Thus, we observed a significant
elevation (2.5-fold change; 140%) in rGSTA5 protein levels
(arbitrary units) in oxycodone-treated rats.

Expression of CYP3A2 protein

SDS-PAGE and Western blotting analyses also identified
CYP3A2 protein (56–58 kDa) in liver microsomes from
saline- (lanes 1–3) and oxycodone-treated rats (lanes 4–6)
and standard rat liver microsomes (lanes 7 and 8) (Figure 2).

Electrophoretic mobility of the observed CYP3A2 is similar
to the antibody manufacturer’s datasheet (Abcam) and
previous isolation and identification of this isoenzyme.[29]

Optical density calculations (mean ± SD, n = 6) of CYP3A2
bands normalised to b-actin control for saline and oxycodone
groups (Figure 2) were 0.260 ± 0.09 and 0.06 ± 0.04,
respectively (P = 0.03). Hence, we observed a significant
repression (5.0 fold change; 80% decrease) in CYP3A2
protein levels (arbitrary units) in oxycodone-treated rats.

Apparent glutathione S-transferase activity

To assess apparent cytosolic GST activity, the apparent rate
of formation of the CDNB-SG adduct was measured in the
cytosolic fraction of oxycodone- and saline-treated rat liver
using UV spectroscopy at 340 nm. At CDNB concentrations
of 320–1000 mmol/l (n = 4 or 5) we observed a significantly
greater mean apparent rate of conjugation in the oxycodone-
treated liver (P < 0.05; Table 3). Percent increases in velocity
(Bonferroni’s t-test P value) for the oxycodone group at
CDNB concentrations of 320, 640, 820 and 1000 mmol/l
were 14% (0.003), 20% (< 0.001), 12% (< 0.001), and 10%
(0.003), respectively.

Apparent selenium-independent glutathione
peroxidase activity

Several GST alpha isoenzymes, including rGSTA5, exhibit
GSH peroxide activity and catalyse the reduction of organic
hydroperoxides to their corresponding alcohols.[16] This
reaction can be measured indirectly by UV spectroscopy
via NADPH depletion, since NADPH is an important
cofactor consumed in the regeneration of GSH through the
reduction of the GSH disulfide.[31] We observed a signifi-
cantly greater mean apparent rate of CuOOH reduction (P <
0.05; Table 3) in oxycodone-treated rat liver compared with
saline-treated liver. This equated to percent changes
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Table 3 Spectrophotometric measurement of apparent cytosolic

glutathione S-transferase activity in the hepatic cytosol of male

Sprague-Dawley rats following repeated daily administration of

oxycodone 15mg/kg i.p. or saline control

CDNB concn

(mmol/l)

Formation of CDNB-SG adduct

Saline group Oxycodone group*

320 410 ± 10 490 ± 10†

640 500 ± 10 600 ± 20‡

820 615 ± 15 690 ± 10‡

1000 660 ± 25 720 ± 10†

CuOOH

concn (mmol/l)

Selenium-independent GSH peroxidase activity

Saline group Oxycodone group*

30 240 ± 5 295 ± 20*

60 375 ± 10 430 ± 20*

150 420 ± 15 520 ± 30‡

600 480 ± 25 610 ± 30‡

CDNB, 1-chloro-2,4 dinitrobenzene; CuOOH, cumene hydroperoxide;

GSH or SG, glutathione. Activity units of CDNB-SG formation and

NAPDH oxidation are expressed as nmol product/mg protein per min.

Values are means ± SEM of 4 or 5 separate determinations, *P < 0.05,
†p < 0.01 and ‡P < 0.001.
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(Bonferroni’s t-test P value) of 23% (0.042), 15% (0.040),
24% (0.001), and 27% (< 0.001) at CuOOH concentrations of
30, 60, 150 and 600 mmol/l, respectively. Incubations
containing all components except CuOOH showed a
negligible rate of NADPH depletion (data not shown),
confirming that there were no additional enzymes in the
isolated hepatic cytosol that contributed to the observed
reduction reaction.

Testosterone hydroxylase activity

Testosterone hydroxylation is catalysed by a diverse group of
CYPs with a large degree of regio- and stereo-selectiv-
ity.[29,32] CYP3A2 (formerly PB-1[33]) displays high testos-
terone 6b-hydroxylation activity.[33,34] Hence, we selected a
previously validated TLC assay to measure 6b-hydroxylation
of testosterone in hepatic microsomes from the two treatment
groups. The calculated mean ± SD rate (pmol/min per mg
protein) of 6b-hydroxylation in oxycodone- and saline-
treated microsomes was 200 ± 15 and 650 ± 50, respectively,
indicating a 3.3-fold (70%) reduction in the oxycodone-
treated sample (P = 0.02).

Discussion

Oxycodone is an opioid receptor agonist, exhibiting potent
analgesic and euphoretic properties, and has been used
clinically worldwide since the early 1900s.[35] Previously we
reported that oxycodone significantly up-regulates the major
drug efflux transporter P-gp (ABCB1) in various tissues,
including the liver and brain.[14] A subsequent in-vivo study
confirmed that oxycodone treatment altered the tissue
disposition of the P-gp substrate paclitaxel. Recently, we
showed that oxycodone modulated a diverse array of genes in
rat brain tissue, including the drug efflux transporter Abcg-2
(BCRP).[15] Moreover, oxycodone impeded the brain accu-
mulation of the Abcg2 substrate mitoxantrone, resulting in an
undesirable drug–drug interaction.[15] An initial pilot micro-
array study conducted in our laboratories revealed that
oxycodone altered the gene expression of several hundred
unique genes in the liver tissue of oxycodone-treated rats
(A. Myers and N. Eddington, unpublished data). Among the
vast array of changed genes in this preliminary study, we
noted several DMEs. The current study represents a more
thorough and focused study into oxycodone-related changes
in hepatic gene expression and function of DMEs in male
Sprague-Dawley rats.

In the current study rats were administered oxycodone
hydrochloride at a dosage of 15 mg/kg every 12 h for 8 days.
This dose was carefully selected and pharmacologically
relevant, as described in detail elsewhere.[15,19,20,36] In
addition, twice-daily dosing of oxycodone is commonly
reported in the literature,[14,37] since oxycodone has an
elimination half-life of 3.0 ± 0.5 h and five half-lives
(> 15 h) are required for ~95% of the drug to be
eliminated.[38] As such, dosing every 12 h ensures that
enough oxycodone is administered prior to complete
elimination from the rats’ bodies.

Following repeated treatment of oxycodone, ten DMEs
were identified as either significantly down- or up-regulated
on our microarray profile and subsequent QRT-PCR

validation analysis (Table 1). We selected one down-
regulated gene – CYP3A2 – for further protein expression
and functional activity analyses because of its key role in
metabolising a vast array of endogenous and exogenous
compounds.[18] CYP3A2 preferentially catalyses the oxida-
tion of testosterone at the 6b position, although it does
exhibit minor 2b and 15b hydroxylase activity.[33,39] In
humans, CYP3A enzymes, chiefly CYP3A4, are the most
abundantly expressed CYP enzymes and exhibit a broad
substrate specificity.[40] Moreover, human CYP3A4 shares
72% sequence identity with rat CYP3A2, indicating possible
shared substrate similarities.[41]

Microarray analysis revealed a down-regulation (7.0-fold
decrease) of CYP3A2 that was confirmed by QRT-PCR (6.0-
fold decrease). Immunoblotting of CYP3A2 (Figure 2) found
a corresponding decrease in protein expression (5.0-fold
decrease). In addition, our CYP3A2-specific testosterone
hydroxlyase activity assay found a significantly decreased
rate of formation of the 6b hydroxy metabolite. All in all,
the microarray, QRT-PCR, Western blotting and functional
assay confirm the down-regulation of CYP3A2 in
oxycodone-treated rats.

Interestingly, two other DMEs also involved in testoster-
one metabolism, CYP17A1 and CYP2C13, were differen-
tially expressed on microarray and QRT-PCR. CYP17A1,
up-regulated over 10.0-fold on microarray and QRT-PCR,
catalyses the stereospecific hydroxylation of pregnenolone,
leading to precursors of the glucocorticoid cortisol, and also
plays a key role in androgen biosynthesis.[42] Rat CYP2C13
(P-450g), down-regulated by approximately 3.5 fold on
microarray and QRT-PCR, is a highly polymorphic male-
specific isozyme that catalyses the hydroxylation of testos-
terone,[43] androstenedione and progesterone.[44] Thus, the
changes in protein expression and functionality of CYP3A2
by oxycodone coupled to potential changes in protein
expression and enzymatic acitivity of CYP17A1 and
CYP2C13 suggest that chronic oxycodone treatment may
significantly alter endogenous testosterone metabolism. For
instance, since both down-regulated CYP2C13 and CYP3A2
metabolise testosterone to 6b-hydroxytestosterone, oxyco-
done treatment may boost circulating endogenous testoster-
one levels. Also the pronounced up-regulation of CYP17A1
may accelerate the metabolic pathway that produces andro-
gens and cortisol. In fact, Poyhia et al.[45] found a significant
dose-related increase in short-term cortisol levels in oxyco-
done-treated patients undergoing anaesthesia. Taken
together, our findings clearly warrant future in-vivo studies
in males to examine the relationship between oxycodone
treatment and circulating androgen levels.

Our microarray and QRT-PCR results also revealed a
significant up-regulation of rGSTA5 (Table 1), a member of
the large class of GSTs that primarily catalyse the
nucleophilic attack of GSH on the electrophilic centre of a
variety of compounds, in most cases forming less-toxic, more
water-soluble GSH conjugates.[16] Since rGSTA5 is an
important enzyme that detoxifies various clinically relevant
drug substrates,[16,17] we further characterised its up-regula-
tion in the hepatic cytosol of oxycodone-treated rats.
Immunoblotting showed a significantly increased level of
rGSTA5 protein in oxycodone-treated rats (Figure 1). Two
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separate functional studies were also performed to determine
if the increases in mRNA and protein levels led to enhanced
cytosolic GST enzymatic activity. Initially, we measured the
apparent rate of CDNB conjugation: the oxycodone-treated
group showed a significantly greater apparent rate of CDNG-
SG formation (Table 3). As previously mentioned, GSTs also
contain selenium-independent GSH peroxidase activity that
is important in cellular defence against a wide variety of
organic hydroperoxides.[46] Enzymatic reduction of CuOOH
appears to be confined to mostly GST alpha isozymes.[16]

Since our microarray analysis revealed no significant
changes in RNA levels of related GST isoenzymes
rGSTA3 and rGSTA1, this assay should be more specific
to our target isozyme. In fact, our results show an elevated
rate in CuOOH reduction in the hepatic cytosol of
oxycodone-treated rats (Table 3).

Overall, the fold changes of rGSTA5 RNA levels, protein
expression and functional activity observed in this study
were 6.5, 2.5 and 1.5, respectively. Similar to our findings,
modulation of rGSTA5 RNA by various xenobiotics was
reported to show a disproportionate correlation with
cytosolic protein expression and GST activity.[25,27,47,48] In
addition, the modest but statistically significant changes in
GST activity observed in our assays may result in part from
pooling of the liver samples, which leads to a more
conservative measure.

Taken together, both GST functional studies indicate that
there is a significant increase in GST (mainly rGSTA5)
activity in the liver tissue of oxycodone-treated rats. The
likely human orthologue of rGSTA5 is hGSTA1 or hGSTA3.
For example, our sequence comparison analysis using
BLAST searches revealed that the amino acid sequence of
rGSTA5 (NP_113697) is closely similar to hGSTA1
(NP_665803) and hGSTA3 (NP_000838) – by 87 and 88%,
respectively. Human GSTA1 is widely expressed in the liver,
whereas hGSTA3 is selectively expressed in steroidogenic
tissues.[49] Human GSTA1-1 (the homodimer of two GST α1
subunits) catalyses the GSH conjugation (leading to
inactivation) of numerous clinically used nitrogen mustard
anti-cancer agents, including chlorambucil, melphalan,
cyclophosphamide and thiotepa.[17] In fact, GSTA1-1 was
40–50-fold more proficient than GSTP1-1 in conjugating
chlorambucil,[50] and was the only GST isozyme found to
catalyse the formation of mono- and diglutathionyl adducts
of phosphoramide mustard, a hydrolysis product of
4-hydroxy cyclophosphamide.[51] Thus, the induction of
rGSTA5 by oxycodone may increase the risk of certain
drug–drug interactions. For example, the co-administration
of oxycodone and nitrogen mustard compounds in cancer
patients may result in an unwanted reduction in cytotoxic
efficacy In addition, CYP3A activates the anti-cancer
compounds cyclophosphamide and ifosphamide,[52] further
complicating the pharmacotherapy in cancer patients treated
long term with oxycodone and one of these agents.

Conclusions

Our study is the first report, to our knowledge, to show the
effects of chronic oxycodone administration in male
Sprague-Dawley rats on the gene expression of various

DMEs, including the testosterone hydroxylase CYP3A2 and
dextoxicant rGSTA5. Microarray, QRT-PCR, Western blot-
ting and functional studies all indicate a significant decrease
in CYP3A2 and concomitant significant increase in rGSTA5
mRNA, protein expression and functional activity. The
potential clinical ramifications of our novel findings are
intriguing, and justify future in-vivo pharmacokinetic/
pharmacodynamic studies.
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